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Influence of the geometry of a rough substrate on wetting

K. Topolski,1,* D. Urban,1,† S. Brandon,2 and J. De Coninck1
1Centre de Recherche en Mode´lisation Moléculaire, Universite´ de Mons-Hainaut, 20 Place due Parc, 7000 Mons, Belgium

2Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
~Received 1 May 1997!

The wall tension of a rough wall is considered within a semi-infinite planar Ising model. Using Monte Carlo
simulation techniques, we have studied the influence of the geometry of a rough surface on the wall tension.
Different geometries are examined in detail, ranging from elementary deformation of the flat surface, including
pores, to more realistic substrates generated randomly with a given roughness. We give evidence that complex
geometries lead to wall tensions that are bounded by those associated with two simple well-characterized
substrates, protrusion and pits.@S1063-651X~97!13009-4#

PACS number~s!: 68.10.Cr, 05.50.1q, 61.20.Ja
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I. INTRODUCTION

The wetting of solid substrates by a liquid is a pheno
enon of primary importance in many fields of science a
technology. Applications can be found in biology, agricu
ture, food technology, the paper industry, and more. T
wettability of a solid substrate by a sessile drop is gover
by Young’s classical equation

tABcosu5tAW2tBW[Dt, ~1!

whereu is the contact angle between the drop (B) and the
solid surface (W), t i j represents the interfacial tension alo
the interface between phasesi and j ( i , j 5A,B,W), andA
refers to the fluid phase surrounding the sessile drop.
associated wettability of the substrateW is conditioned by its
wall tension (Dt). One should realize, however, th
Young’s equation was established for large drops of liq
on top of smooth, chemically homogeneous substrates. S
ideal surfaces never appear in nature; chemical heterog
ities together with finite sized surface roughness occur in
realistic solid surfaces, and should be taken into acco
when analyzing their wettability.

Recently@1#, we employed Monte Carlo simulations in
wetting study of a two-dimensional chemically heterog
neous solid surface. Results exhibited the validity of Cass
law @2#, as well as the independence of wall wettability wi
respect to the geometry of the heterogeneities. Here, we
interested in the effect of substrate surface roughness o
wetting characteristics, including the importance of mic
scopic features of the surface as well as other parame
~e.g., temperature!.

According to Wenzel@3#, such a substrate can be chara
terized by its roughness,r[uWu/uW0u, whereuWu is the sub-
strate’s surface area anduW0u is the surface area of projec
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tion of W onto the tangent plane. Sixty years ago, Wenzel@3#
suggested that the substrate roughness should affect its
tability according to

Dt~r !.rDt~1! ~2!

for small enough roughness valuesr , wherer 51 represents
a perfectly flat surface.

Although this equation was originally derived based
experimental observations, a recent rigorous analysis o
three-dimensional lattice~Ising! model @4# has proved Eq.
~2! to be correct at very low temperatures and smallr values.
Interestingly, it is easy to show that different geometric
structures of a substrate surface can yield the samer value.
For example, a surface decorated by several raised fea
~hills! will exhibit the samer value as a substrate supportin
depressions~holes! of similar size and density as those of th
hills. In this study, we investigate substrate roughness as
as the geometry of roughness, and their combined effec
the wall tension Dt; we consider hereafter the two
dimensional (d52) Ising model whereDt is exactly com-
putable for a chemically homogeneous, smooth wall. T
paper is organized as follows. Section II is devoted to
presentation of the model. The results are then given in S
III. Concluding remarks end the paper.

II. MODEL

This model is defined on the latticeZ3Z, with a plot of
an integer valued step function representing the rough w
Each lattice point (i 1 ,i 2) is associated with a spin variabl
s i , which may take on one of two possible values,11 or
21. Let LL5@2L,L#3@2L,L# be a finite square inZ3Z

and let us fix the value of the spins outsideLL to be s̄ . The
rough wall is introduced as follows. Consider the step fun
tion I L :R→@2L,L# defined as

I L~x!5 (
i 52L

L

~ci11/2!1[ i 2
1
2 ,i 1

1
2 )~x!, ~3!

whereciPZù@2L,L21# and
i-
3353 © 1997 The American Physical Society
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1A~x!5H 1 if xPA

0 if xPAc.

The plot ofI L(x) versusx for xP@2L,L# physically out-
lines the rough wall. LetWL5$( i 1 ,i 2)PLL : i 2<I L( i 1)%. We
assume thats i511 for all i PWL . Inside the interior
~bulk!, spinss i are coupled with a nearest neighbor coupli
constantJ.0, while the spins at the boundary between t
bulk and the substrateWL are coupled with coupling constan
h. The HamiltonianHL(su s̄ ) of the model is formally given
by

HL~su s̄ !52J (̂
i j &

i PL\W, j PL\W

s is j2J (̂
i j &

i PL\W, j PLc\W

s i s̄ j

2h (̂
i j &

i PL\W, j PW

s i ,

where^ i j & denotes nearest neighbor pair,Lc is the comple-
ment of the setL, ands̄ is the chosen configuration of spin
outsideL. We will consider two types of boundary cond
tions ~BC!, the 1BC and2BC defined ass i511 for all i
PLc, and s i521 for all i PLc, respectively. In addition,
the Hamiltonians with these boundary conditions are deno
by HL(•u1) andHL(•u2), respectively. Finally, for a given
inverse temperature valueb, we define Z1(L,b) and
Z2(L,b) to be the partition functions associated with the
Hamiltonians. The wettability of the substrate at a given
verse temperatureb, can defined in a similar way as for th
smooth wall,

bDt5 lim
L→`

2
1

2L11
ln
Z1~LL ,b!

Z2~LL ,b!
, ~4!

which can be simplified to the following useful expressi
@1#:

Dt5 lim
L→`

1

b~2L11!
lnK expS 22bh (

i P]W
s i D L

mL

, ~5!

where]W includes all the spins in the bulk at the bounda
between the bulk and the substrateWL , and the average
^&m1L has to be taken with respect to the measure

mL~$s%!5
exp@2bHLL

~su1 !#

Z1~LL ,b!
. ~6!

This thermal average can be~and is! determined using Monte
Carlo techniques, as already used in our previous study@1#.
Results presented hereafter are obtained by applying M
Carlo techniques, based on Metropolis dynamics@5#, to the
two-dimensional Ising model. Starting from a randomly s
lected initial configuration, our results~obtained for a 64364
and/or 2563256 lattice! were shown to reach equilibrium
well within 5000 Monte Carlo~MC! time steps@1#. All the
results presented in this work were obtained by averaging
statistically independent Monte Carlo simulations, each c
sisting of a time average between 6000 and 12 000 t
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steps. This technique allows a numerical determination
Dt(1) within 3% of the analytically determined value.

III. RESULTS

Using this technique, we have studied the wall tensionDt
for rough substrates. These rough substrates were
structed as periodic square-wave perturbations of the sm
case, see Fig. 1.

As already proved@4#, it is known that for low enough
temperatures, Wenzel’s law, Eq.~2!, should hold. To illus-
trate this behavior, we have studiedDt(r ) for different tem-
peratures as a function of the roughnessr of the substrate,
using the substrates shown in Fig. 1. The perturbations
pear with a wavelengtha and a peak-to-peak distanceb. It is
then straightforward to show that

r 5112b/a. ~7!

For these kinds of substrates, as can be seen in Fig. 2, W
zel’s law only holds for low enough temperatures. For
creasing temperature, the roughness of the substrate bec
effectively less and less important,Dt(r ) thus approaches
Dt(1).

More precisely, there is a temperature-dependent cor
tion Dt(r ).r f (b,G)Dt(1), where, for any fixed geometry

FIG. 1. Description of holes and hills geometry.

FIG. 2. Dt(r )/Dt(1) as a function of roughnessr for three
different temperaturesTkB50.6 ~diamonds!, TkB51.176~squares!,
andTkB51.538~pluses!, for fixed geometry of holes withc52 and
b52. The wall binding constanth is 0.2. The dotted line refers to
Wenzel’s law.
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G, limb→` f (b,G)→)→1, as illustrated by the differen
cases appearing in Fig. 2. Now, for any geometry, low te
perature expansion arguments@4# lead to

f ~b,G!511Aexp2~BbJ!, ~8!

and our results presented in Fig. 3 reveal how good
approximation is over a wide range of temperatures.

Now, for a given roughnessr , let us study the role of the
geometry of the substrate. Let us first compareDt for per-
turbations consisting of hills with those consisting of hole
As presented in Fig. 4, hills are more favorable toward w
ting than holes, which is in agreement with cluster expans
arguments@4# for a smallh/J ratio, i.e., a solid-liquid inter-
action smaller than a liquid-liquid interaction, which is e
pected within a partial wetting regime@6#.

The results given in Fig. 4 are related not only to t
small h value ~0.1! but also to the rather large value~0.5!,
which is more than half the critical value ofh leading to
complete wetting (hc50.828 68 . . . ). These results confirm
that the way we prepare a substrate of a given roughne
very important: adsorbing molecules on top of a flat subst
should enhance wetting more than desorbing molecules f
the top of a flat substrate. This effect seems to be impor
since here at least it is of the order of 10% to 20% of the
wall tension. To find parameters of the surface geometry
are important for wetting, let us choose the description
geometry in terms of holes and let us now study, for a giv
roughnessr , the effect of the opening of the holes~pores! on
wetting. We present in Fig. 5 the wall tensionDt(r ) for a
given roughness,r 51.25, as a function of the openingc in
lattice units.

As can be seen, the wall tension increases withc up to a
certain plateau appearing forc>cT . This effect certainly has
to be related to the finiteness of the correlation length. Mo
over, the value ofcT , which characterizes the appearance
the plateau, should also depend on he temperature in

FIG. 3. 12Dt(r )/rDt(1) as a function ofbJ for several
roughnesses, from top to bottomr 51.5, 1.25, 1.125, 1.0625 with
h50.2, J51, b52, andc52. The correspondingA’s are 0.6551,
0.8776, 1.103, 1.5556 and theB’s are 4.2136, 3.9264, 3.5065
3.3726; the fitted curves are represented in dots.
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same way as the correlation length. It means that the de
dence of Dt(r ) on c becomes less important for a low
enough temperature, as presented in Fig. 2. The effect o
depth of the holes is also considered in Fig. 6, again
r 51.25, where we plotDt(r ) as a function of the openingc
for three different depthsb52, 4, and 5.

Obviously here, the depthb seems to play a minor role in
comparison to the openingc. We do not plot the associate
error bars in the figure, since they overlap almost complet
Up to now, we have been dealing with a rather oversimp
fied type of substrate. In order to consider more realis
situations let us then consider a random geometry for
substrate built in the following way. Consider a strip
heightH and let the surface of the substrate be described
a step function that is the realization of a random walk w
reflecting boundary conditions, moving in this strip with
probability of jump of sizei (u i u,H/2) distributed as

P$ i %5Mexp~2mu i u!, ~9!

wherem is some fixed constant andM is the normalizing

FIG. 4. Dt(r )/Dt(1) as a function of roughnessr for
TkB51.333 andb52. Diamonds on the figure are related to hills
size 2 (a2c52) and pluses to holes of size 2 (c52). Data plotted
in ~a! are obtained forh50.1 while in ~b! for h50.5.
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constant. A typical substrate generated by this procedur
given in Fig. 7 for a given roughnessr 52.015.

Using this procedure, we compute the associated wall
sion Dt for 100 independent realizations of the substra
Changing the constantm, we may construct several sub
strates with different average roughness. On the basis of t
cal AFM-STM surface measurements@7#, we restrict our-
selves to average roughnessr between 1 and 2. Results fo
four different values of the average roughness, 1.25,
1.75, and 2.0, are given in Fig. 8.

Such a complex geometry can be described by a com
nation of different depths and opening holes. These res

FIG. 5. Dt as a function of the opening of the holesc for
TkB51 with given roughnessr 51.25, h50.333, b54 for a
1283128 lattice. The dashed line describes the value predicted
Wenzel’s law.

FIG. 6. Dt as a function of the openingc of the holes for
different hole depthsb52 ~crosses!, b54 ~squares!, andb55 ~dia-
monds! for temperatureTkB51 andh51/3 and given roughnes
r 51.25.
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show, however, surprisingly that the holes of the openin
curve and the simple hill of opening 1 seem to give so
upper and lower bounds for the wall tension of a comp

y

FIG. 7. A typical substrate withm51 andr 52.015.

FIG. 8. Dt(r ) as a function of roughness for holes of dep
b51 and openingc51 geometry~pluses!, hills of depth 1 and
opening 1 geometry~crosses! and random geometry~diamonds! for
temperatureTkB50.6 ~a! and forTkB51.4 ~b! with h51/3.
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56 3357INFLUENCE OF THE GEOMETRY OF A ROUGH . . .
substrate. The fact that the difference between the upper
lower bounds increases with temperature is in agreem
with Wenzel’s idea that geometry plays no role at lo
enough temperature, as observed in Fig. 8. This proper
quite remarkable since it would lead, if it could be gener
ized in three dimensions, to a very powerful way to char
terize surface wetting properties.

IV. CONCLUDING REMARKS

To summarize, we have thus studied the wall tensionDt
of the two-dimensional Ising model of a rough substrate
appears that for high temperature, Wenzel’s law should
corrected by some thermal factor
nd
nt

is
-
-

It
e

Dt~r !.r f ~b,G!Dt~1!.

We give here evidence that the geometry of the wall surfa
may be usefully characterized to study its effects on wetti
By considering different geometries, for a given roughnesr ,
we observe significantly different effects when consider
hills versus holes on top of the flat substrate. The effec
the thickness of the rough region as well as its porosity
also examined. More complex geometries are also stud
and can be approached by the hill and hole cases. That t
effects are not limited to the two-dimensional Ising mod
remains an open question.
s
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