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Influence of the geometry of a rough substrate on wetting

K. Topolski** D. Urban*' S. Brandorf, and J. De Coninck
ICentre de Recherche en Mdidation Moleculaire, Universifede Mons-Hainaut, 20 Place due Parc, 7000 Mons, Belgium
2Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
(Received 1 May 1997

The wall tension of a rough wall is considered within a semi-infinite planar Ising model. Using Monte Carlo
simulation techniques, we have studied the influence of the geometry of a rough surface on the wall tension.
Different geometries are examined in detail, ranging from elementary deformation of the flat surface, including
pores, to more realistic substrates generated randomly with a given roughness. We give evidence that complex
geometries lead to wall tensions that are bounded by those associated with two simple well-characterized
substrates, protrusion and pif$1063-651X97)13009-4

PACS numbds): 68.10.Cr, 05.50+q, 61.20.Ja

[. INTRODUCTION tion of W onto the tangent plane. Sixty years ago, Weh2gl
suggested that the substrate roughness should affect its wet-
The wetting of solid substrates by a liquid is a phenom-tability according to
enon of primary importance in many fields of science and
technology. Applications can be found in biology, agricul- A7(r)=rAr(1) 2)
ture, food technology, the paper industry, and more. The

wettability of a solid substrate by a sessile drop is governegy, small enough roughness valugswvherer =1 represents
by Young'’s classical equation a perfectly flat surface.

Although this equation was originally derived based on
experimental observations, a recent rigorous analysis of a
TABCOY= Taw— Tew=AT, (D three-dimensional latticélsing) model [4] has proved Eq.
(2) to be correct at very low temperatures and smathlues.

) Interestingly, it is easy to show that different geometrical
where ¢ is the contact angle between the drdg) (and the gy cures of a substrate surface can yield the savaue.
solid surface W), 7;; represents the interfacial tension along por example, a surface decorated by several raised features
the interface between phasesndj (i,j=A,B,W), andA (hjjis) will exhibit the same value as a substrate supporting
refers to the fluid phase surrounding the sessile drop. Thgepressiongholes of similar size and density as those of the
associated wettability of the substrateis conditioned by its  hjjis. In this study, we investigate substrate roughness as well
wall tension Q7). One should realize, however, that 55 the geometry of roughness, and their combined effect on
Young's equation was established for large drops of liquidthe wall tension A7 we consider hereafter the two-
on top of smooth, chemically homogeneous substrates. Su@imensional d=2) Ising model where 7 is exactly com-
ideal surfaces never appear in nature; chemical heterogengyiaple for a chemically homogeneous, smooth wall. The
ities_ tqgethe_-r with finite sized surface roughness_ occur in a'Eaper is organized as follows. Section Il is devoted to the
realistic solid surfaces, and should be taken into accounfresentation of the model. The results are then given in Sec.

when analyzing their wettability. _ ~_lll. Concluding remarks end the paper.
Recently[1], we employed Monte Carlo simulations in a

wetting study of a two-dimensional chemically heteroge-

neous solid surface. Results exhibited the validity of Cassie’s Il. MODEL

law [2], as well as the independence of wall wettability with

respect to the geometry of the heterogeneities. Here, we are This model is defined on the lattié&x Z, with a plot of

interested in the effect of substrate surface roughness on i integer valued step function representing the rough wall.

wetting characteristics, including the importance of micro-Each lattice pointi(,i,) is associated with a spin variable

scopic features of the surface as well as other parameters , which may take on one of two possible values] or

(e.g., temperatuje —1.LetA, =[—-L,LIX[—L,L] be a finite square iZXxZ
According to Wenze[3], such a substrate can be charac-and let us fix the value of the spins outsidlg to beo. The

terized by its roughness=|W|/|W,|, where|W| is the sub-  rough wall is introduced as follows. Consider the step func-

strate’s surface area and/y| is the surface area of projec- tion I, :R—[—L,L] defined as

L
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1 if xeA
Ia(xX)= .
A 0 if xeA°.

The plot ofl (x) versusx for xe[ —L,L] physically out- I R T = reference line
lines the rough wall. LetV, ={(i1,i,) e A :ip<I (i1)}. We . for holes geometry
assume thato;=+1 for all ieW,. Inside the interior b
(bulk), spinso; are coupled with a nearest neighbor coupling ..~ , - e ine
constantJ>0, while the spins at the boundary between the

bulk and the substrad/, are coupled with coupling constant
h. The HamiltoniarH , (o| o) of the model is formally given

by steps. This technique allows a numerical determination of
A 7(1) within 3% of the analytically determined value.

FIG. 1. Description of holes and hills geometry.

Ha(alo)=—1 > ogioj—J > oioj

) {j) (ip) lll. RESULTS
e A\W,je AW e A\W,j e AW
Using this technique, we have studied the wall tengien
-h > o for rough substrates. These rough substrates were con-
(i) structed as periodic square-wave perturbations of the smooth
e AW jew case, see Fig. 1.
where(ij) denotes nearest neighbor pair is the comple- As already proved4], it is known that for low enough

ment of the sef\, and o is the chosen configuration of spins ;er?ptt-:;:atlgreﬁ, V_Venzel’i law, F%Z.)A’d‘f'ho%ld pr:cd' Tci t|IIus-
outsideA. We will consider two types of boundary condi- rate this behavior, we have studiad(r) for different tem-

tions (BC), the +BC and— BC defined asr;= + 1 for all peratures as a function of the roughnessf the substrate,
c AC and’o:—l for all i e A respectivlely In addition using the substrates shown in Fig. 1. The perturbations ap-
il 1 il . 1

the Hamiltonians with these boundary conditions are denote ear W'th. a wavelength and a peak-to-peak distanbelt is

by Ha(-|+) andH ,(-| ), respectively. Finally, for a given ¢ straightforward to show that

in\_/erse temperature valug, we define Z*_(A,,B) ~and r=1+2b/a. )

Z~ (A, B) to be the partition functions associated with these

Hamiltonians. The wettability of the substrate at a given in-For these kinds of substrates, as can be seen in Fig. 2, Wen-
verse temperatur@, can defined in a similar way as for the zel's law only holds for low enough temperatures. For in-

smooth wall, creasing temperature, the roughness of the substrate becomes
. effectively less and less importank,7(r) thus approaches
, 1 ZY (AL, Ar(1).
BAT=lim — In (Ac.A) (1)

L. 2L+1 'Z‘(A B), ) More precisely, there is a temperature-dependent correc-
L tion A7r(r)=rf(B,G5)A (1), where, for any fixed geometry

which can be simplified to the following useful expression
[ 1] sl T T T T T T T T %_

Ar= i ;| —2ph > 5
="M B2l 1) n<exp( ﬂieﬁwai)>lu, © 1at

L—oo
L

wheredW includes all the spins in the bulk at the boundary
between the bulk and the substralg , and the average

o~ 18Ff 4
() u+1L has to be taken with respect to the measure 5
< $
({ }) eXF{ - IBHAL(O'| + )] (6) \E/ 12 | |
mL(yoy) = : <
Z5(AL.B) .
This thermal average can l@nd i9 determined using Monte 14 b % { |
Carlo techniques, as already used in our previous sflily o I
Results presented hereafter are obtained by applying Monte "%
Carlo technigues, based on Metropolis dynaniigls to the . Ly,
two-dimensional Ising model. Starting from a randomly se- 105 11 115 12 125 h1-3 ;-35 14 145 15
roughness,

lected initial configuration, our resulfsbtained for a 64X 64
and/or 256<256 lattice were shown to reach equilibrium FIG. 2. A7(r)/A7(1) as a function of roughness for three
well within 5000 Monte CarldMC) time stepg1]. All the  gifferent temperatureEkg = 0.6 (diamond3, Tks= 1.176(square}
results presented in this work were obtained by averaging 58ndTky=1.538(pluses, for fixed geometry of holes with=2 and
statistically independent Monte Carlo simulations, each conb=2. The wall binding constartt is 0.2. The dotted line refers to
sisting of a time average between 6000 and 12 000 tim&Venzel's law.
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FIG. 3. 1-A~(r)/rA7(1) as a function ofBJ for several
roughnesses, from top to bottors 1.5, 1.25, 1.125, 1.0625 with 15 - 1
h=0.2,J=1, b=2, andc=2. The corresponding’s are 0.6551,
0.8776, 1.103, 1.5556 and tH&'s are 4.2136, 3.9264, 3.5065, {
3.3726; the fitted curves are represented in dots. 14+ ] J

G, limg_..f(8,G)—)—1, as illustrated by the different
cases appearing in Fig. 2. Now, for any geometry, low tem-
perature expansion argumeifity lead to

At (r)/At(l)

f(8,G)=1+Aexp-(BBJ), )

approximation is over a wide range of temperatures.
Now, for a given roughness let us study the role of the
geometry of the substrate. Let us first compAre for per- 1 . : . ! '
turbations consisting of hills with those consisting of holes. ! ” Y oughness, 1 s
As presented in Fig. 4, hills are more favorable toward wet- ,
ting than holes, which is in agreement with cluster expansion F'G- 4. A7(r)/A7(1) as a function of roughness for
arguments4] for a smallh/J ratio, i.e., a solid-liquid inter- T_kB=1.333 and=2. Diamonds on the flgure are related to hills of
action smaller than a liquid-liquid interaction, which is ex- size 2 @_sz.) and p'EseS to hOIG.S of size 2_26 2). Data plotted
pected within a partial wetting reginfé]. in (a) are obtained foh=0.1 while in(b) for h=0.5.
The results given in Fig. 4 are related not only to the
small h value (0.1) but also to the rather large valye.5),

and our results presented in Fig. 3 reveal how good this 1k i i

same way as the correlation length. It means that the depen-
dence of A7(r) on c becomes less important for a low

WhiChl itS mor; than_h;léztg%critical_r\r/]alue of I(Ttading fFO enough temperature, as presented in Fig. 2. The effect of the
complete wetting j.=0. - -). These results confirm oo™ the holes is also considered in Fig. 6, again for

that the way we prepare a substrate of a given roughness |s_ 1.25, where we plo 7(r) as a function of the opening
very important: adsorbing molecules on top of a flat substrat?or threé different depthb=2, 4, and 5

should enhance wetting more than desorbing molecules from Obviously here, the depth seems to play a minor role in

the top of a flat substrate. This effect seems to be importa : : .
since here at least it is of the order of 10% to 20% of the ﬂargompanson to the opening We do not plot the associated

wall tension. To find parameters of the surface geometry th o bars in the figure, since they overlap almost completely.

are important for wetting, let us choose the description of; " to now, we have been dealing with a rather oversimpli-
P 9: puon Oty type of substrate. In order to consider more realistic

Nituations let us then consider a random geometry for the
substrate built in the following way. Consider a strip of
heightH and let the surface of the substrate be described by
a step function that is the realization of a random walk with
reflecting boundary conditions, moving in this strip with a
probability of jump of size (]i|<H/2) distributed as

roughness, the effect of the opening of the holgsores on
wetting. We present in Fig. 5 the wall tensidnr(r) for a
given roughness,=1.25, as a function of the openimgin
lattice units.

As can be seen, the wall tension increases witlp to a
certain plateau appearing foec;. This effect certainly has
to be related to the finiteness of the correlation length. More- P{i}=Mexp —mli|), 9)
over, the value o€, which characterizes the appearance of
the plateau, should also depend on he temperature in thgherem is some fixed constant and is the normalizing
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FIG. 7. A typical substrate witim=1 andr =2.015.

a show, however, surprisingly that the holes of the opening 1
. . curve and the simple hill of opening 1 seem to give some
FIG. 5. A7 as a function of the opening of the holesfor  ypner and lower bounds for the wall tension of a complex

Tkg=1 with given roughness=1.25, h=0.333, b=4 for a
128x 128 lattice. The dashed line describes the value predicted by
Wenzel's law.

constant. A typical substrate generated by this procedure is
given in Fig. 7 for a given roughness- 2.015.

Using this procedure, we compute the associated wall ten-
sion A7 for 100 independent realizations of the substrate.
Changing the constanh, we may construct several sub-
strates with different average roughness. On the basis of typi-
cal AFM-STM surface measuremertg], we restrict our-
selves to average roughnasbetween 1 and 2. Results for
four different values of the average roughness, 1.25, 1.5,
1.75, and 2.0, are given in Fig. 8.

Such a complex geometry can be described by a combi-
nation of different depths and opening holes. These results
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FIG. 6. A7 as a function of the opening of the holes for
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as a function of roughness for holes of depth

different hole depthb=2 (crosses b=4 (squarel andb=5 (dia- b=1 and openingc=1 geometry(pluses, hills of depth 1 and
monds for temperatureTkg=1 andh=1/3 and given roughness opening 1 geometricrossesand random geometrigliamonds for
r=1.25. temperaturel kg=0.6 (a) and forTkg=1.4 (b) with h=1/3.
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substrate. The fact that the difference between the upper and Ar(r)=rf(B,G0)Ar(1).

lower bounds increases with temperature is in agreement

with Wenzel's idea that geometry plays no role at low

enough temperature, as observed in Fig. 8. This property i§/e give here evidence that the geometry of the wall surfaces

quite remarkable since it would lead, if it could be general-n5y he ysefully characterized to study its effects on wetting.

ized in three dimensions, to a very powerful way to characgy, considering different geometries, for a given roughmess

terize surface wetting properties. we observe significantly different effects when considering

hills versus holes on top of the flat substrate. The effect of

IV. CONCLUDING REMARKS the thickness of the rough region as well as its porosity are

To SummariZE, we have thus studied the wall tendien also examined. More CompleX geometries are also studied

of the two-dimensional Ising model of a rough substrate. [tand can be approached by the hill and hole cases. That these
appears that for high temperature, Wenzel's law should béffects are not limited to the two-dimensional Ising model

corrected by some thermal factor remains an open question.
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